Climate sensitivity alteration of the Middle Sikhote-Alin main conifer species
Abstract and keywords
Abstract (English):
Climate of the South of the Russian Far East is exposed to changes that are proved by meteorological data. Trees are a reliable indirect indicator of Global climate change, which has been confirmed in a number of published works around the world. The multi-species, multi-level, structurally complex forests of the Middle Sikhote-Alin are distinguished by their complex dynamic processes and the absence of direct anthropogenic influence. The trees’ response to climatic factors with which there is a significant reliable relationship (precipitation, temperature) is observed in this work. Cores were selected using standard dendrochronological approaches. The “treeclim” package of R software was used for dendroclimatic analysis. Graphs were obtained for the dynamics of climatic sensitivity of the main conifer species of the Middle Sikhote-Alin (Pinus koraiensis Siebold & Zucc., Abies nephrolepis (Trautv.) Maxim., Picea jezoensis (Siebold & Zucc.) Carriere, Larix gmelinii (Rupr.) Kuzen.) for a period of 78 years. The stability of dendroclimatic relationships in time was examined and the periods of its alteration were noted. The most climate-sensitive species among those studied were Gmelin larch and Ayan spruce. They are most vulnerable to droughts and their habitats may shift northward with further increases in growing season mean monthly air temperatures.

Keywords:
climate, dendrochronology, Far East, Pinus koraiensis, Abies nephrolepis, Picea jezoensis, Larix gmelinii
Text
Publication text (PDF): Read Download
References

1. Adams H. D. [et al.] Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought // Proceedings of the national academy of sciences, 2009, Vol. 106, Iss. 17, pp. 7063-7066. DOI:https://doi.org/10.1073/pnas.0901438106.

2. Allen C. D., Macalady A.K., Chenchouni H., Bachelet D., Mcdowell N. [et al.] A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests // Forest Ecology and Management, 2010, Vol. 259, Iss. 4, pp. 660-684. DOI: fhttps://doi.org/10.1016/j.foreco.2009.09.001 ff. ffhal00457602f

3. All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC). – URL: http://meteo.ru/ (data obrascheniya: 20.08.2023).

4. Bai X. P. [et al.] Impacts of rapid warming on radial growth of Larix gmelinii on two typical micro-topographies in the recent 30 years // Ying Yong Sheng tai xue bao - The Journal of Applied Ecology, 2016, Vol. 27, Iss. 12, pp. 3853-3861. DOI:https://doi.org/10.13287/j.1001-9332.201612.036.

5. Boulanger Y. [et al.] Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone // Landscape Ecology, 2017, Vol. 32, pp. 1415-1431. DOI:https://doi.org/10.1007/s10980-016-0421-7.

6. Briffa K. R., Jones P. D., Basic chronology statistics and assessment // Methods of Dendrochronology: Applications in the Environmental Sciences E. R. Cook, and L. A. Kairiukstis, Kluwer Acad., Norwell, Mass., 1990, pp. 137–152. – URL: https://www.springer.com/gb/book/9780792305866

7. Brito P. [et al.] Increased water use efficiency does not prevent growth decline of Pinus canariensis in a semi-arid treeline ecotone in Tenerife, Canary Islands (Spain) // Annals of forest science, 2016, Vol. 73, pp. 741-749. DOI:https://doi.org/10.1007/s13595-016-0562-5.

8. Brubaker L. B. Spatial patterns of tree growth anomalies in the Pacific Northwest // Ecology, 1980, Vol. 61, Iss. 4, pp. 798-807. DOI: doi.org/10.2307/1936750.

9. Bunn A. G. A dendrochronology program library in R (dplR) // Dendrochronologia, 2008, Vol. 26, Iss. 2, pp. 115-124. DOI:https://doi.org/10.1016/j.dendro.2008.01.002.

10. Cook E. R. [et al.] Identifying functional groups of trees in west Gulf Coast forests (USA): a tree‐ring approach // Ecological application, 2001, Vol. 11, Iss. 3, pp. 883-903. DOI:https://doi.org/10.1890/1051-0761(2001)011[0883: IFGOTI]2.0.CO;2.

11. Fritts H. C. Tree rings and climate // Academic Press, London, 1976, 567p. URL: https://shop.elsevier.com/books/tree-rings-and-climate/fritts/978-0-12-2....

12. Guijarro J. A., Guijarro M. J. A. Package ‘climatol’. 2019. URL: https://cran. r-project. org/web/packages/climatol/climatol.pdf (data obrascheniya: 21.07.2023).

13. Halofsky J. E., Peterson D. L., Harvey B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA // Fire Ecology, 2020, Vol. 16, Iss. 1, pp. 1-26. DOI:https://doi.org/10.1186/s42408-019-0062-8.

14. Holmes R. L. Computer-assisted quality control in tree-ring dating and measurement // Tree-Ring Bulletin, 1983, 43, pp. 69-78. URL: https://www.ltrr.arizona.edu/~ellisqm/outgoing/dendroecology2014/readings/Holmes_1983.pdf.

15. Hoy A., Sepp M., Matschullat J. Large-scale atmospheric circulation forms and their impact on air temperature in Europe and northern Asia // Theoretical and applied climatology, 2013, Vol 113, pp. 643-658. DOI:https://doi.org/10.1007/s00704-012-0813-9.

16. IPCC AR6 WGI. [Elektronnyy resurs]. URL: https://www.ipcc.ch/report/ar6/wg1/ (data obrascheniya: 10.10.2023).

17. Jiang Y. et al. Radial growth response of Larix gmelinii to climate along a latitudinal gradient in the Greater Khingan Mountains, Northeastern China // Forests, 2016, Vol. 7, Iss. 12, pp. 295. DOI:https://doi.org/10.3390/f7120295.

18. Karl T. R., Trenberth K. E. Modern global climate change // Science, 2003, Vol. 302, Iss. 5651, pp. 1719-1723. DOI:https://doi.org/10.1126/science.109022.

19. Köcher P. [et al.] Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies // Annals of Forest Science, 2009, Vol. 66, Iss. 1, pp. 1. DOI:https://doi.org/10.1051/forest/2008076.

20. Larsson L. Å. CDendro & CooRecorder software dendrochronology measurements and dating, version 9.3.1. 2019. URL: http://www.cybis.se/forfun/dendro.

21. Lavigne M. B., Ryan M. G. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites // Tree Physiology, 1997, Vol. 17, Iss. 8-9, pp. 543-551. DOI:https://doi.org/10.1093/treephys/17.8-9.543.

22. Lyu S. [et al.] Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China // Dendrochronologia, 2017, Vol. 45, pp. 113-122. DOI:https://doi.org/10.1016/j.dendro.2017.08.002.

23. Pederson N. [et al.] The influence of winter temperatures on the annual radial growth of six northern range margin tree species // Dendrochronologia, 2004, Vol. 22, Iss. 1, pp. 7-29. DOI:https://doi.org/10.1016/j.dendro.2004.09.005.

24. Peguero-Pina J. J. et al. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity // Forests, 2020, Vol. 11, Iss. 10, P.1028. DOI:https://doi.org/10.3390/f11101028.

25. Peñuelas J., Canadell J. G., Ogaya R. Increased water‐use efficiency during the 20th century did not translate into enhanced tree growth // Global Ecology and Biogeography, 2011, Vol. 20, Iss. 4, pp. 597-608. DOI:https://doi.org/10.1111/j.1466-8238.2010.00608.x.

26. Perez-Garcia J. [et al.] Impacts of climate change on the global forest sector // Climatic change, 2002, Vol. 54, pp. 439-461. DOI:https://doi.org/10.1023/A:1016124517309

27. Petr M. [et al.] Inconsistent recognition of uncertainty in studies of climate change impacts on forests // Environmental Research Letters, 2019, Vol. 14, Iss. 11. P. 113003. DOI:https://doi.org/10.1088/1748-9326/ab4670.

28. Rinn F. TSAP-Win professional // Time Series Analysis and Presentation for Dendrochronology and Related Applications, 2007, P. 20. URL: http://www.rinntech.de/index-28703.html.

29. Soja A. J., Tchebakova N. M., French N. H. F. [et al] Climate-induced boreal forest change: Predictions versus current observations // Global and Planetary Change, 2007, Vol. 56, Iss. 34, pp. 274–296. DOI:https://doi.org/10.1016/j.gloplacha.2006.07.028.

30. Tardif J., Brisson J., Bergeron Y. Dendroclimatic analysis of Acer saccharum, Fagus grandifolia, and Tsuga canadensis from an old-growth forest, southwestern Quebec // Canadian Journal of Forest Research, 2001, Vol. 31, Iss. 9, pp. 1491-1501. DOI:https://doi.org/10.1139/x01-088.

31. Thomas P., Farjon A. Pinus koraiensis. The IUCN Red List of Threatened Species // UK, 2013, Vol. 1. URL: http://dx. doi. org/10.2305/IUCN.

32. Ukhvatkina O. [et al.] Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin'Mountain range // Climate of the Past, 2021, Vol. 17, Iss. 2, pp. 951-967. DOI:https://doi.org/10.5194/cp-17-951-2021.

33. Venäläinen A. [et al.] Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review // Global change biology, 2020, Vol. 26, Iss. 8, pp. 4178-4196. DOI:https://doi.org/10.1111/gcb.15183.

34. Wang H. [et al.] The impacts of climate change on the radial growth of Pinus koraiensis along elevations of Changbai Mountain in northeastern China // Forest Ecology and Management, 2013, Vol. 289, pp. 333-340. DOI:https://doi.org/10.1016/j.foreco.2012.10.023.

35. Wang X. [et al.] Recent rising temperatures drive younger and southern Korean pine growth decline // Science of the Total Environment, 2019, Vol. 649, pp. 1105-1116. DOI:https://doi.org/10.1016/j.scitotenv.2018.08.393.

36. Wang X. [et al.] Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia // Trees, 2017, Vol. 31, pp. 415-427. DOI:https://doi.org/10.1007/s00468-015-1341-x.

37. Way D. A., Sage R. F. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) BSP] // Global Change Biology, 2008, Vol. 14, Iss. 3, pp. 624-636. DOI:https://doi.org/10.1111/j.1365-2486.2007.01513.x.

38. Wu C. Y., Raven P. H., Hong D. Y. Flora of China (Cycadaceae through Fagaceae) // Science Press, Beijing & St. Louis, 1999, Vol. 4. URL: http://flora.huh.harvard.edu/china/mss/volume04/index.htm.

39. Yasmeen S. [et al.] Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing’an Mountains, China // Dendrochronologia, 2019, Vol. 58, pp. 125645. DOI:https://doi.org/10.1016/j.dendro.2019.125645.

40. Zang C., Biondi F., Zang M. C. Package ‘treeclim’, 2022. URL: https://cran.rstudio.org/web/packages/treeclim/treeclim.pdf.

41. Zhang P., Liu B. Effect of climate change on Larix gmelinii growth in different latitudes // J. Northeast For. Univ, 2015, Vol. 43, pp. 10-13. URL: http://en.cnki.com.cn/Article_en/CJFDTotal-DBLY201503003.htm.

42. Zhu H. F. [et al.] Tree ring-based February–April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon // Climate of the Past, 2009, Vol. 5, Iss. 4, pp. 661-666. DOI:https://doi.org/10.5194/cp-5-661-2009.

43. Zhu L. [et al.] Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China // Dendrochronologia, 2018, Vol. 50, pp. 52-63. DOI:https://doi.org/10.1016/j.dendro.2018.05.002.

44. Aleksandrova, M. S. i dr. Dendrohronologicheskaya informaciya v lesovodstvennyh issledovaniyah / M.S. Aleksandrova, V.V. Korovin, S.A. Korotkov, A.M. Krylov, V.A. Lipatkin, D.E. Rumyancev i dr.// Moskovskiy gosudarstvennyy universitet lesa. – 2007. – 138 s. – URL: https://elibrary.ru/item.asp?id=19510954.

45. Gruza, G. V. i dr. Osobennosti temperaturnogo rezhima u poverhnosti Zemnogo shara v 2018 godu / G.V. Gruza, E.Ya. Ran'kova, I.A. Korneva i dr. // Fundamental'naya i prikladnaya klimatologiya. – 2019. – T. 1. – S. 97-127. – URL: https://elibrary.ru/item.asp?id=38585118.

46. Man'ko, Yu. I., Gladkova, G. A. Massovoe usyhanie pihtovo-elovyh lesov na rossiyskom Dal'nem Vostoke: osnovnye itogi izucheniya / Yu. I. Man'ko, G. A. Gladkova //Komarovskie chteniya. – 2003. – №. 49. – S. 131-171. – URL: https://elibrary.ru/item.asp?id=28286431.

47. Pavlov, I. N. Bioticheskie i abioticheskie faktory usyhaniya hvoynyh lesov Sibiri i Dal'nego Vostoka / I. N. Pavlov //Sibirskiy ekologicheskiy zhurnal. – 2015. – T. 22. – №. 4. – S. 537-554. – URL: https://www.sibran.ru/upload/iblock/0bf/0bf4ab0bfdd414515f541bdc0e632251....

48. Rumyancev, D. E., Kuhta, A. E., Puchinskaya, D. V. Klimaticheskiy signal zasuh v hronologii eli iz kislichnogo tipa lesa Central'no-lesnogo zapovednika / D. E. Rumyancev, A. E. Kuhta, D. V. Puchinskaya // Lesnoy vestnik/Forestry bulletin. – 2016. – T. 20. – №. 2. – S. 36-43. – URL: https://cyberleninka.ru/article/n/klimaticheskiy-signal-zasuh-v-hronolog....

49. Rusakova, Yu. A. OON: v povestke dnya – problema izmeneniya klimata / Yu. A. Rusakova //Vestnik MGIMO-Universiteta. – 2021. – №. 4 (13). – S. 286-294. – URL: https://www.vestnik.mgimo.ru/jour/article/download/2919/2374.

50. Solov'ev, K. P. Kedrovo-shirokolistvennye lesa Dal'nego Vostoka i hozyaystvo v nih/ K.P. Solov'ev // Habarovsk:Kn. Izd-vo. – 1958. – 325 s.

51. Shiyatov, S. G. i dr. Metody dendrohronologii / S.G. Shiyatov, E.A. Vaganov, A.V. Kirdyanov i dr.// KrasGAU, Uchebno-metodicheskoe posobie. – 2000. – 80 s. – URL: https://elibrary.ru/item.asp?id=18801379.


Login or Create
* Forgot password?